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ABSTRACT 

Given current concerns regarding the use of antibiotics and chemical 

preservatives in animal husbandry, a naturally occurring antimicrobial peptide of 

bacterial origin (bacteriocin) that exhibits antagonist activity toward foodborne 

pathogens could provide a favorable alternative to these agents. The goal of this 

research was to identify one or more bacteriocins that might reduce the incidence of 

C. iejuni in poultry and poultry products, and thus enhance the safety of food 

products of poultry origin. 

Twelve bacteriocin-producing bacteria (producer organisms), which included 

eight Lactobacillus sp. strains, two Paenibacillus polymyxa strains, a Streptococcus 

salivarius and a Propionibacterium thoenii, were selected and screened against two 

wild type strains of C. jeiuni (indicator organisms) via agar spot and well diffusion 

assays. Four organisms inhibited C. jejuni growth and were retained for further 

evaluation. Through inhibition tests with catalase and four proteases, the inhibitory 

substances were determined to be proteinaceous. The bacterium Paenibacilllus 

polymyxa (ATCC 842) provided the most consistent inhibitory activity. 

The antimicrobial molecule produced by P. polymyxa was found to be a 

protein of molecular weight between 3000 and 5000 Da, stable during extended 

stora eat low temperature, stable to heat at 121 °C, and optimally produced during g 

incubation at 30-37°C for 24 h in the pH range 6.0 to 7.4. 
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INTRODUCTION 

Food safety is a worldwide concern. While Hazard Analysis Critical Control 

Point {HACCP) programs have improved the safety of the food supply from the 

processing plant to the grocery store, this program has not yet been embraced on 

the farm. The agricultural environment is a reservoir of many pathogenic 

microorganisms. Salmonella spp., E. coli, Campylobacter spp. and Clostridium spp. 

are a few of the bacteria that inhabit the physical environments in which livestock are 

raised. The "Farm to Fork" campaign has heightened consumer awareness of food 

safety issues and identified the farm as the next target. 

While Salmonella spp. and E. coli are considered prime indicator organisms 

for food sanitation and safety, Campylobacter jejuni is the foodborne pathogen that 

is recognized worldwide as the leading cause of gastroenteritis in humans. 

Increasing numbers of infections are .being reported with undercooked poultry meat 

being a large contributor to those numbers. Campylobacter jejuni is a natural 

inhabitant of the intestinal tract of broilers and is known to contaminate the carcass 

during the grow-out phase, transportation and processing. Reducing the prevalence 

of this organism will provide safer poultry products for human consumption. 

Inhibiting the growth of this bacterium by means of "natural" interventions would fit 

the concept of a product free of chemical preservatives or antibiotics and provide a 

produc# that is fresh, wholesome and safe for human consumption. The result would 

provide a "win-win" situation for consumers and producers alike. 

Bacteriocins are naturally occurring antimicrobial proteins of bacterial origin; 

those produced by lactic acid bacteria have been particularly widely studied. While 

the majority of currently identified bacteriocins are produced by gram-positive 

microorganisms and inhibit similar gram-positive organisms, some are known to 
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inhibi# gram-negative bacteria as well. The discovery of a bacterium that produced a 

protein antagonist toward Campylobacter jejuni would provide a "natural" aid for the 

safety of food products of poultry origin. #n the current study, literature searches 

identified twelve bacteriocin-producing microorganisms with documented inhibitory 

activity against various gram-negative bacteria. These twelve producer organisms 

were eva#uated for their abi#ity to inhibit the growth of C. jejuni. 

The research outlined in this paper documents the initial characterization of a 

protein produced by Paenibacillus polymyxa (ATC~ 842) that is capab#e of inhibiting 

the growth of Campylobacter jejuni. Paenibacillus polymyxa (formerly Bacillus 

polymyxa) is anitrogen-fixing gram-positive organism found in soil and foods. #ts 

an#imicrobial protein, once further developed, might be incorporated into the pre-

harvest or processing environment to decrease the number of infected chickens 

arriving at the processing plant or decrease contamination levels at the plant. 
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LITERATURE REVIEW 

Campylobacter jejuni 

Campylobacter jejuni was first identified as an enteric pathogen in 1957 by 

E,O. King. In the early 1970's, Belgian scientists corroborated her work when they 

isolated this organism from children suffering from diarrhea (Goossens and Butzler, 

1992). This organism emerged in the 1970s as a potential food safety concern, but 

. its significance was not established because of a lack of adequate isolation and 

detection methods {Norcross et al., 1992). However, since that time major 

advances have been made in techniques for the detection, isolation and 

identification of many Campylobacter species. 

Eleven species of Campylobacter have been identified, most having been 

found in humans (Skirrow and Glaser, 1992). C. jejuni and C. coli are the two 

species most predominately identified from cases of foodborne illnesses. While C. 

fetus is primarily noted as causing abortions in cattle and sheep, it infrequently 

causes disease in human in the form of low-grade septicemia. Evidence of human 

pathogenicity from C. upsaliensis is also strong, but incomplete (Skirrow and Blaser, 

1992) . 

Campylobacter jejuni is aGram-negative rod-shaped microorganism. This 

organism is nonspore forming and motile with a characteristic cork-screw motion. 

Campylobacter jejuni grows well at 42°C under microaerophilic conditions. The 

primary niche for campylobacters is the intestinal tract of warm-blooded animals 

(Stern and Line, 2000). 

Currently, the infectious route of this organism is not completely understood 

It is theorized that pathogenicity may be related to toxin production and epithelial 
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disruption (Van Campenhout et al., 2001; Stern and Line, 2000). While rare, 

diseases such as Guillain Barre syndrome, Reiter's syndrome and associated 

neurological disorders are sequeiae to Campylobacter infections (Denis et al., 2001; 

Stern and Line, 2000). 

Neither industrialized nor developing countries are immune to human health 

issues caused by Campylobacter infections. In industrialized nations the primary 

source of Campylobacter infection is through the consumption of undercooked 

poultry. Occasionally, infection occurs through consumption of raw milk or untreated 

water, or contact with domestic pets (Tauxe, 1992). Developing countries face 

higher infection rates because of their large rural population bases; proximity to 

animal-rearing environments is reported as a significant risk factor (Taylor, 1992). 

Campylobacter jejuni and Food Safety 

Campylobacter jejuni is the leading cause of foodborne illnesses in the United 

States, with raw poultry and contaminated water identified as the major sources 

(Trachoo and Frank, 2002). An estimated 2.4 million cases of human 

campylobacteriosis are reported each year in the United States alone (Dickins et al., 

2002), a level that is considerably higher than the reported rates for Salmonella and 

St~igella combined, While not life-threatening, campylobacteriosis causes vomiting, 

headaches, cramps and fever. Occurrence of this illness is highest in young 

children and young adults (Saleha et al., 1998). Published data show that 

processed poultry carcasses are contaminated with Campylobacter at a rate of 30-

100% (Yang et al., 2001). In sporadic outbreaks of campylobacteriosis, 50% of the 

cases in Seattle could be traced to the mishandling of contaminated poultry 

products, while eating raw or undercooked poultry accounted for 70% of the cases in 

an outbreak in Georgia (Stern and Line, 2000). In the United States alone the cost 



www.manaraa.com

5 

of Campylobacter-associated illnesses is estimated between $156 million and $4 

billion annually (Stern and Line, 2000). 

Reducing the prevalence of Campylobactercontamination in poultry 

production (preharvest) and on processed carcasses (post-harvest) will enhance the 

safety of poultry food products consumed by humans. 

Campylobacter Contamination in Poultry Production 

Preharvest 

Contamination by C. jejuni begins on the farm and can be introduced by 

beetles, unchlorinated drinking water, farm workers, reuse of old litter, and other 

birds (www.cdc.gov., 2002). This bacterium can be detected in poultry as early as 2-

3 weeks after hatching {Shreeve et al., 2000). Preharvest husbandry practices are 

such that a single poultry house often contains thousands of birds. Campylobacter 

is not pathogenic to the bird itself but, once infected, the birds can easily transmit the 

bacterium to other birds generally via the drinking water and feces (Van 

Campenhout et al., 2003). Feed is an unlikely source of this organism as 

Campylobacter is sensitive to dry conditions (www.cdc.gov., 2002). The primary 

site of colonization in the live bird is in the caeca where C. jejuni can concentrate in 

the mucin layer in the crypts of the villi and use the mucin as an energy source 

(Saleha et al., 1998). Additionally, poultry have a high body temperature that 

provides a suitable environment for Campylobacter growth (Van Campenhout et 

al. , 2003) . 

Cross-contamination between birds occurs during times of stress. 

Temperature fluctuations within the rearing house, food and water depriva#ion prior 

to slaughter, crowded conditions, and transportation to the processing plant are 

stress conditions for the bird. It has been suggested that stressed animals exhibit 
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more peristaltic movement of material through the gut and excrete pathogenic 

microorganisms more frequently {Whyte et al., 2001), At this time, there is no 

commercially available vaccine to reduce the presence of Campylobacterin the 

preharvest environment. 

Post-harvest 

The processing plant provides another source fior Campylobacter 

contamination of poultry. Campylobacter is introduced via feathers, skin and the 

intestinal tracts of colonized birds (Saleha et al., 1998). Transportation trucks and 

poultry coops are not always adequately cleaned between flocks and are another 

source of Campylobacter contamination {Stern et al., 2001). The processing steps 

of slaughter, scalding, defeathering, evisceration, chilling, and packaging reduce the 

level of Campylobacter but also provide a vehicle for recontamination {Izat et al., 

1998). Contamination of working surfaces and equipment from #hese processes 

further facilitates the spread of this organism (Saleha et al., 1998). 

Research has shown that scalding at high temperatures can reduce the level 

of bacterial survival, yet may also facilitate adherence of bacteria to the carcass 

{Yang et al., 2001). The defeathering and evisceration stages have been shown to 

contribute considerably to the presence of Campylobacter sp. due to the leakage of 

intestinal contents onto the carcass. The level of recoverable Campylobacter 

organisms in feces can range from 104cfu to 10'cfu per carcass (Saleha et al., 

1998). Carcasses are subsequently passed through a chid tank that is treated with 

an antimicrobial chemical such as trisodium phosphate or chlorine. This processing 

step will lower the number of Campylobacter, but unless properly maintained and 

monitored this chill tank can become a source of recontamination of the carcass 

(Stern et al., 2001), 
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Although plants are federally inspected, no standard processing parameters 

exist at all plants. The initial scalding step may vary in water temperature and 

exposure time; the age of birds to be processed will vary; chill tank temperatures can 

be different; attention to preventative maintenance procedures can vary. These are 

a few of the potential critical control points that can affect the level of Campylobacter 

contamination occurring at the processing plant (Yusu#u et al., 1983). While the 

level of contamination on the final product may be low, a risk to human health 

remains. 

Campylobacter contamination and home food preparation 

Home food preparation can also be a source of foodborne illness caused by 

C. jejuni contamination. Processed chicken carcasses may have 103 to105

cfu/carcass, while the infectious dose of C. jejuni is only 500 cells (Saleha et al., 

1998). Undercooking of poultry allows for the survival of this bacterium. once 

cooked, poultry meat should be held at temperatures <5°C or >60°C to inhibit growth 

of the organism (www.hna.ff.vic.gov, 2002), Studies have shown that C. jejuni can 

survive under frozen conditions for 2-3 months (Oosterom et a1., 1983; 

Yogasundram and Shane, 1986). 

Hopkins and Scott isolated Campylobacterorganisms from kitchen sinks and 

demonstrated the ability of this pathogen to survive in that environment (cited in 

Stern and Line, 2000). Acuff and his colleagues investigated the washing 

procedures used for utensils and preparation surfaces and found that adequate 

washing removed C. jejuni from all surfaces except wooden cutting boards (cited in 

Stern and Line, 2000). 

Attention to sanitary handling of raw poultry, proper cleaning of surfaces and 

utensils, adequate hand washing., maintenance of proper storage temperature 
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conditions, and adequate cooking will reduce the potential for infections caused by 

C. jejuni (www.hna.ffh.vic.gov, 2002). 

Intervention Technologies 

Currently, both physical and chemical methods are being used to reduce the 

potential of Campylobacter contamination of poultry products (Mead, 2000). 

Chemical interventions are commonly used in the preharvest environment. Organic 

acids and formaldehyde are applied to feed and organic acids are incorporated into 

water systems and litter mixtures. Formaldehyde acts by denaturing proteins by 

forming covalent crosslinks with a number of organic functional groups on proteins 

t-NH2, -OH, -COON, and -SH). Formaldehyde is a carcinogenic compound and 

must be used with extreme caution. The organic acids act by interfering with the 

cell's membrane potential equilibrium. Once the organic acid has entered the cell, 

the cell attempts to regain equilibrium and in the process drains itself of its energy 

and eventually dies (Moore et a1., 2001). While many chemical preservatives are 

easily applied and are approved for food use, their effectiveness can be dependent 

on application method, concentration, duration of treatment and the level of microbial 

contamination. Organic acids can alter the appearance and odor of the poultry meat 

if applied at high levels (Mead, 2000). 

Chemical preservatives such as organic acids, chlorine, trisodium phosphate 

and acidified calcium sulfate are being used in post-harvest production to reduce the 

presence of Campylobacter in the processing plant (Trachoo and Frank, 2002; Van 

Campenhout et al., 2003; Yang et al., 2001). The use of organic acids presents the 

same issues in post-harvest usage as in preharvest applications. Trisodium 

phosphate can leave a soapy feel in the mouth and is not desirable to the consumer 

tKotuia and Kotula, 2000). 
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Physical methods of removing microorganisms include steam, hot water, and 

high pressure sprays (Mead, 2000). The advantage of physical methods is the 

avoidance of chemical residues on the meat; however, undesirable changes in the 

meat product may still occur (Mead, 2000). Physical methods are most generally 

used in the post-harvest environment. Other methods used to reduce the number of 

Campylobacter organisms on poultry are microwaves, oscillating magnetic field 

pulses and irradiation (Mead, 2000). Effectiveness of these nonthermal 

interventions is dependent on uniform application to the food matrix (Farkas, 2001). 

Although irradiation is slow to gain acceptance in the United States, it is effective in 

reducing the number of viable C. jejuni organisms (Patterson, 1995). 

Antibiotic use in animal production has become an issue in both the United 

States and the European Union. Three large poultry producers —Tyson Foods, 

Perdue Farms and Foster Farms —have voluntarily reduced or eliminated all 

antibiotic use when feeding healthy chickens (www.organiconsumers.org).

McDonald's, the world's largest restaurant chain, announced a new policy prohibiting 

the use of those antibiotics commonly used to treat human diseases for growth 

promotion purposes in poultry production. This would include a class of compounds 

called fluoroquinolones. All production facilities dedicated to producing produc#s for 

McDonalds are expected to comply with this policy (www. McDonalds.com). 

The trend toward reduced usage to complete banning of these chemicals is 

setting the stage for alternative technologies that must continue to ensure the safety 

of the world's food supply. 

Summary 

Campylobacter jejuni presents a significant challenge to the safety of food. 

Whether the source of contamination is preharvest through exposure on the farm, 



www.manaraa.com

~o 

post-harvest from processing and handling problems, or at home from the 

consumption of undercooked poultry or contaminated ready-to-eat food, the 

reduction and/or elimination of this organism #rom the food supply is a subject of 

much interest, "Natural" interventions such as bacteriocins, plant extracts and 

bioactive peptides (lactoferrin) are of current interest as #hey could provide an 

opportunity for a food product free of chemical preservatives and fit the concept of a 

fresh, wholesome and safe poultry product for human consumption. 

Bacteriocins 

A plethora of literature exists describing antimicrobial molecules (bacteriocins) 

produced by both Gram-positive and Gram-negative bacteria. The information 

presented here is a review of a portion of that literature as it pertains to the research 

conducted and is not intended to be a comprehensive examination of bacteriocins. 

Bacteriocins are a group of protein-containing molecules produced by 

bacteria that exhibit antimicrobial activity toward susceptible microorganisms (Tagg 

et al., 1976; ~uwehand, 1998). Many of these compounds are hydrophobic, cationic 

peptides that are typically stable to high heat, a wide pH range, and storage over 

time (Ray and Daeschel, 1992; Seah et al., 2002; Hsieh and Glatz, 1996; Jack et al., 

1995). Bacteriocins are degraded by proteolytic enzymes of the gastrointestional 

tract of the animal and appear to have no toxic effects. Such characteristics make 

these natural compounds potential alternatives to synthetic interventions for the 

enhancement of food safety (Biswas et al, 1991). 

Bacteriocins are produced by both Gram-positive and Gram-negative bacteria 

with the majority of those researched originating from Gram-positive organisms. 

They typically possess a narrow inhibitory spectrum and are largely inhibitory to 
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closely related species. However, inhibitory activity against Gram-negative bacteria 

has been reported {Ray and Daeschel, 1992; Bhunia et al., 1988; Lewus et al., 

1999; Seah et al., 2002). Many bacteriocins from Gram-positive bacteria such as 

lactic acid bacteria are ribosomally synthesized prepeptides that appear to be 

biologically inactive. During post-transformational modification reactions, the C-

terminal propeptide is cleaved which leaves an active antimicrobial molecule {Jack 

et al., 1995; Epand and Vogel, 1999). 

Bacteriocin Classification 

Bacteriocins are generally categorized into four classes depending on 

molecular weight and mode of action; they are briefly summarized here (Ouwehand, 

1998; Cleveland et al., 2001). 

Class 1 

Bacteriocins in this class are referred to as lantibiotics as they contain 

lanthionine. They are small peptides of less than 5000 Da. These bacteriocins are 

either cationic hydrophobic peptides (Class la) or they are globular in structure 

(Class Ib) with either no net charge or a net negative charge. Their primary target is 

the cell membrane of the bacterium. Nisin is a Class ! bacteriocin. 

Class 11 

This group of bacteriocins is described as small (<10,000 Da), heat-stable 

membrane-active peptides. Their mode of action is the formation of pores in the 

cell membrane of susceptible bacteria, disrupting the proton motive force and 

causing cell death. Pediocin PA-1 and lactacin F are examples of Class II 

bacteriocins. 
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Class Ill 

The bacteriocins of Class 111 are large heat-labile proteins. These are large 

proteins generally >30,000 Da. The overall mode of action of this class of 

bacteriocins is not well understood. Acidophilucin A and lactacins A and B are Class 

111 bacteriocins. 

Class I V 

Bacteriocins in this class are complex molecules for which the presence of 

lipid or carbohydrate moieties is necessary for activity. This class of bacteriocins is 

not well classified nor is the mode of action completely understood. 

Bacteriocin Production 

The optimization of bacteriocin production is a critical factor for both economic 

and commercial viability of this technology. A thorough understanding of the growth 

parameters, storage conditions and product stability of both the producing 

microorganism and the recovered active molecule is important. 

Bacteriocins are produced during different stages of the growth cycle 

{Parente et al., 1994; Venema et al., 1997). While some bacteriocins are produced 

during the logarithmic phase of microbial growth, others such as pediocin AcH are 

produced during the late exponential and early stationary phase {Biswas et al., 

1991). Bacteriocin activity can decline after the early stationary phase of microbial 

growth (Venema et al., 1997). 

The amount of bacteriocin produced can be affected by incubation 

temperature (Seah et al., 2002; Biswas et al., 1991). pediocin AcH was produced at 

a higher level when producer organism Pediococcus acidilactici was incubated at 

30°C and 37°C as opposed to 40°C (Biswas et al., 1991). Inhibitory activity was 

observed against Clostridium perfringens when Bacillus subtilis was incubated at 
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either 30°C or 37°C with no activity noted at other incubation tem eratures Seah et 
p ( 

al., 2002). Alternately, it has been reported that Leuconostoc gelidum produced the 

same level of inhibitor whether grown at 5°C or 25°C (Ray and Daeschel, 1992). 

Low storage temperature was reported to increase antimicrobial activity of 

propionicin PLG-1 (Hsieh and Glatz, 1996). The authors hypothesized that 

conformational changes in the tertiary structure of the antimicrobial protein may have 

increased its affinity for the target cells. 

Many bacteriocins exhibit greater activity at pH <5 than at the physiological 

pH. According to Jack et al. (1995), maximum bacteriocin adsorption to a cell wall 

occurs between pH 2.0 and 6.0. It has been suggested that once the bacteriocin is 

attached to the cell surface, alterations to the barrier function occur, which disrupt 

the membrane potential and lead to cell death. At pH levels < pH 2.0, inhibitory 

activity may be reduced as too few antimicrobial molecules are bound to the cell 

surface while at pH levels > pH 6.0, interactions between bacteriocins and receptors 

on cell surfaces may be inhibited (Jack et al., 1995). 

Bacteriocins Antagonistic Toward Gram-Negative Bacteria 

The activity of bacteriocins against Gram-positive bacteria is widely 

documented (Tagg et al., 1976; Klaenhammer, 1988; Daeschel, 1989; Ray and 

Daeschel, 1992; Klaenhammer, 1993; Jack et a1., 1995). There is considerably less 

documentation on antimicrobial proteins active against Gram-negative bacteria. 

Since many of the microorganisms of concern to food safety are Gram-negative 

bacteria — e.g. E. coli, Salmonella sp., Shigella sp., and Campylobacter sp. —

identification of bacteriocins active against these microorganisms is of great interest. 

Ray and Daeschel (1992) listed a number of microorganisms that produce 

metabolites exhibiting inhibitory activity towards Gram-negative bacteria. These 
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bacteria include Lactococcus lactis subsp. lactis var. diacetylactis (DRC1, 26-2), 

Streptococcus salivarius subsp. thermophilus (ATCC 14485), Leuconostoc spp. (OX, 

VX), Lactobacillus acidophilus (1 FO 3205, AC 1), Lactobacillus viridescens {PX, QX), 

and Bifidobacterium bifidum (1452). A number of other organisms have been 

documented in the literature as exhibiting activity against Gram-negative bacteria: 

Propionibacterium thoenii P127 (Lyon and Glatz, 1993); Pediococcus pentosaceous 

FBB61, Pediococcus pentosaceous FBB63-DG2, and Lactococcus lactis subsp. 

lactis 11454 {Spelhaug and Harlander, 1989). Paenibacillus polymyxa (Diamond V 

Laboratories, Cedar Rapids, lA) was also identified as showing activity against 

Gram-negative bacteria (undocumented, 2001). While literature exists documenting 

the ability of some bacteriocins to inhibit the growth of various Gram-negative 

microorganisms, e.g. E. soli, few documents examined in the current study noted 

inhibitory activity specifically against C. jejun% 

Brief descriptions of the bacteria used in this research follow. 

Propionibacteria are Gram-positive bacteria with a long history of use in dairy 

fermentations (Faye et al., 2000). Propionibacterium thoenii has been shown to 

exhibit a broad range of activity against both Gram-positive and Gram-negative 

bacteria (Lyon and Glatz, 1993). The bacteriocin produced by this bacterium, PLG-

1,was found to be stable to heat and pH. 

Both Lactobacillus delbrueckii subsp. lactis and Lactobacillus delbrueckii 

subsp. bu/garicus are microorganisms also used in dairy applications (Barefoot and 

Nettles, 1992). Dairy cultures of lactobacilli produce diacetyl that is inhibitory to the 

growth of several bacteria, including Gram-negative bacteria {Barefoot and Nettles, 

1992). Lactacins A and B are produced by L. delbrueckii subsp. lactis but are known 

to inhibit only closely related species (Ray and Daeschel, 1994). 
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Lactobacillus acidophilus has been reported to produce an inhibitor active 

against E. coli (Muriana and Luchansky, 1993). Bacteriocins characterized from this 

organism include lactacin F, lactacin B and acidophiliucin A (Muriana and 

Luchansky, 1993). bactacin F produced by L. acidophilus 88 was inhibitory to 

Enterococcus faecalis (Ray and Daeschei, 1994). 

Lactobacillus casei is a strain commonly used for probio#ic applications 

(Kiaenhammer, 2002; Salminen et al., 1998). The primary goal of the use of 

probiotic organisms for animals is intestinal health through the reduction of enteric 

pathogens (Klaenhammer, 2001), The bacteriocin caseicin 80 is produced by L. 

casei B80 (Muriana and Luchansky, 1993). 

Lactobacillus plantarum is also used for probiotic applications (Klaenhammer, 

2001). Two bacteriocins produced by strains of L. plantarum are plantaricin A and 

plantaricin B (Muriana and Luchansky, 1993). Plantaricin A has exhibited inhibitory 

activity against Enterococcus faecalis (Ray and Daeschei, 1994). 

According to Bergey's Manual of Systematic Bacteriology, Streptococcus 

salivarius is aGram-positive coccoid-shaped bacterium commonly found in the 

mouths of humans and animals and also in feces. Sreptococcus salivarius subsp. 

thermophilus is reported to exhibit inhibitory activity against a wide range of 

microorganisms, including both Gram-positive and Gram-negative bacteria (Ray and 

Daeshel, 1992). As demonstrated in DNA/RNA studies, S. thermophilus is closely 

related to S, salivarius. Two bacteriocins produced by S. thermophilus — ST8 40 

and STB 78 -- have been characterized and exhibit activity against other strains of S. 

thermophilus as well as Enterococcus sp. (Hoover, 2000), 

Lactococcus lactis subsp. lactis has also been reported to be inhibitory to 

some Gram-negative bacteria (Ray and Daeshel, 1992; Spelhaug and 

Harlanger,1989). Strains of Aeromonas sp., E. coli 0157:H7 and vibrio sp. were 
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inhibited by the bacteriocin produced by Lc. lactis while a single strain of C. jejuni 

was not (Spelhaug and Harlander, 1989). Several strains of Lc, lactis produce 

various bacteriocins — e,g. nisin and lactococcin A (Holo et al., 1991). 

Paenibacillus polymyxa, previously classified in Bergey's Manual of 

Systematic Bacteriology as Bacillus polymyxa (Girardin et al., 2002), is a Gram-

positive spore-forming bacterium that is often isolated from foods. This bacterium 

exhibits inhibitory activity toward both Gram-positive and Gram-negative bacteria 

such as Leuconostoc mesenteroides, E. coli, and Clostridium botulinum {Girardin et 

al., 2002). The antimicrobial protein was estimated to be 9000-10000 Da, but some 

strains have been shown #o produce smaller antimicrobial peptides of <3500 Da 

(Girardin et al., 2002). This bacterium was also reported to produce antifungal 

peptides of molecular mass between 800 and 1000 Da (Beatty and Jensen, 2002). 

Electrostatic interactions between the bacteriocin and the negatively charged 

cell membrane are thought #o contribute to the binding of the bacteriocin to the target 

cell (Cleveland et al., 2001). Research has shown that the cationic peptide 

structure of a bacteriocin interacts with the surface lipopolysaccharide layer of the 

Gram-negative bacterium by displacing the divalent cations (Mg2+ or Cat+). The 

outer membrane structure is distorted and channels are formed. This disruption of 

the cell membrane allows for cellular leakage (Hancock, 1997; Hancock et al., 1995; 

Lehrer et al., 1990; Epand and Vogel, 1999). 

Bacteriocin assay methods 

Several methods to measure the inhibitory activity of bacteriocins have been 

documented. Modifications to each type of assay method are frequently adopted 

and utilized for sped#ic research purposes. In-vitro assays are susceptible to 

variable results when working with membrane-active peptides (Giacometti et al., 
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1998). Acknowledging the variability .inherent in benchtop assays, it is 

recommended to perform multiple replicates within the experiment or to conduct 

repeated assays to aid in validating results. 

Both deferred and direct methods are commonly used in screening 

microorganisms for bacteriocin production. 

Deferred Methods 

Deferred methods involve the use of a cell-free bacteriocin preparation. 

Examples of these methods include agar spot (spot-on-the-lawn), flip streak assays 

and well-diffusion assays (Lewus and Montville, 1991). The spot or flip agar 

methods involve spotting or streaking cell-free supernatants onto the surface of the 

agar followed by an overlay of the sensitive culture. Alternately, cell-free 

supernatants can be spotted onto a lawn of sensitive organisms (Lewus and 

Montville, 1991; Zhu et al., 2000; Lyon and Glatz, 1993). Some researchers find the 

agar spot assay preferable as it is easy to perform and the zones of inhibition are 

easier to measure (Zhu et al., 2000). The flip agar test can be more difficult due to 

the "flipping" procedure. The agar disc must be aseptically loosened from the petri 

dish and transferred into the lid. The potential for contaminating or damaging the 

agar disc during this procedure makes this method less desirable (Lewus and 

Montville, 1991). 

In a well diffusion assay, the cell-free supernatant is dispensed into wells cut 

in agar already seeded with a sensitive culture (Lewus and Montville, 1991). The 

supernatant is allowed to absorb, and the indicator organism is allowed to grow 

during incubation under appropriate conditions. An alternate method is to allow the 

supernatant to absorb into wells cut into sterile agar, then to overlay with an agar 

layer seeded with the sensitive culture (Bogovic-Matijasic et al., 1998}. A perusal of 
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the literature suggests the well diffusion assay is the most commonly used method 

for bacteriocin activity analysis. 

Direct Methods 

Direct methods involve the simultaneous growth of both the bacteriocin-

producing and indicator microorganisms. Examples of these methods include agar 

spot (spot-on-the-lawn), flip streak assays and well-diffusion assays (Lewus and 

Montville, 1991). Each method is conducted in a similar manner as its deferred 

counterpart. However, actively growing cultures of the bacteriocin-producing 

organism rather than cell-free culture supernatants are used. 

Agar diffusion assays present a number of limitations. Diffusion rate of the 

bacteriocin depends on the dryness of the agar (Hsieh et al., 1996). It has been 

reported that holding plates overnight at refrigerated temperatures facilitates 

absorption (Rogers and Montville, 1991). Some researchers have documented that 

a soft agar (0.7%) also facilitates diffusion of the supernatant (Seah et al., 2002; 

Cabo et al., 1999). Zone size can be disproportionate to activity when the indicator 

organism is a slow grower (Piddock, 1990). Zones of inhibition may be produced 

from the diffusion of compounds such as hydrogen peroxide or organic acids rather 

than a bac#eriocin (Hoover and Harlander, 1993). It has been suggested that the 

use of tryptic soy agar with yeast extract (TSAYE) for the agar layer can buffer the 

effects of acid diffusion (Lewus and Montville, 1991). 

Other methods have been developed to determine bacteriocin activi#y. 

Hydrophobic grid membrane filters have been utilized to retain proteinaceous 

material from producer organisms. These membranes are subsequently overlayed 

with an indicator culture. This method is reported to yield results similar to the more 

traditional agar diffusion assays (Ryser and Richard, 1991). Automated 

turbidometry kinetically measures the optical density of microtiter plate wells 
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containing both bacteriocin and sensitive cells. This method can offer a quantitative 

alternative to the agar diffusion methods (Skytta and Manila-Sandholm, 1991). A 

microtiter plate assay allows for many samples to be tested at the same time. This 

method is easy to perform and readily reproducible (Friedman et al., 2002; Toba et 

al., 1991). 

Bacteriocin Chacterization Methods 

Many methods are documented in the literature detailing specific assays 

employed to determine the characteristics of a suspected bacteriocin. These 

characteristics are vital to the development of a commercially viable antimicrobial 

molecule. The desired molecule should be heat-stable, capable of maintaining 

activity over a range of storage conditions, effective in a varie#y of pH environments, 

and produced in sufficient quantities to be economical to produce (Barefoot and 

Nettles, 1992; Hsieh and Glatz, 1996). Maximization of bacteriocin production 

includes knowledge of op#imum incubation temperature as well as time, prime pH 

environment, and essential growth nutrients (Palk and Glatz, 1997; Zhu et al., 1998; 

Seah et al., 2002). Some of the procedures used to determine characteristics of an 

antimicrobial protein are briefly reviewed here. 

pH. The methods employed in determining pH tolerance typically involve 

exposing the bacteriocin to various pH environments. !n one study, B. subtilis was 

grown in tryptic soy broth with yeas# extract that had been adjusted to various pH 

levels. The cells were removed by filtration, and the supernatant was tested for 

activity using a well di#fusion assay (Seah et al., 2002). In ano#her s#udy, crude 

bacteriocin preparations were exposed #o various pH levels for several dif#erent 

incubation temperatures and times, #hen a standard well diffusion assay was 
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conducted to measure residual activity (Zhu et al., 2000; Du Toit et al., 2000). While 

some bacteriocins maintain activity over a wide pH range, many are more effective 

at specific pH levels. The production of the bacteriocin lac#acin F, produced by L. 

acidophilus, was maximal at pH 7.0 while undetectable at pH 6.8 or 7.6 (Muriana 

and Klaenhammer, 1987). 

Nisin is more stable at pH <4.0 bu# completely destroyed at pH >8.0. Since 

the majority of foods requiring preservation are above pH 4.0, the use of nisin as a 

food preservative may be limited (Ray and Daeschel, 1992). 

Storage. The ability of a bacteriocin to maintain activity during long-term 

storage is important if the compound is to be commercially viable as a food 

preservative (Hsieh and Glatz, 1998). Partially purified propionicin PLG-1 was 

stored at three temperatures (-20°C, 4°C and 25°C) for extended periods of time and 

assayed at various time intervals for inhibitory activity against the selected indicator 

organism (Hsieh and Glatz, 1996), 

Incubation Time. Bacteriocin production is affected by incubation time. 

Maximum biomass can parallel maximum bacteriocin activity (Zhu et al., 1998). 

Zhu et al. (1998) incubated Lactobacillus gasseri KT7 for various time intervals after 

which biomass and bacteriocin titer were measured. Biomass was determined by 

optical density measurements and bacteriocin titer by a well diffusion assay. 

Propionicin PLG-1 was found to be produced during the late-exponential phase of 

growth as determined by well diffusion and critical dilution assays (Lyon and Glatz, 

1993). 

Incubation Temperature. Incubation of the producing bacterium at various 

temperatures is used to determine the optimum bacteriocin production temperature. 

Seah et al. 2002 incubated B. subtilis at 25°C, 30°C, 37°C, 41 °C, 45°C and 50°C, 
( ) 
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but observed antimicrobial activity only in the supernatants of cultures incubated at 

30°C and 37°C. 

Elevated Temperature. Heating in water baths at elevated temperatures and 

in laboratory autoclaves can establish the heat stability of a bacteriocin. 

Standardized times, temperatures, and methods of exposure have not been 

established for temperatures of 60°C to 121 °C. For example, Girardin et al. {2002) 

exposed the cell-free supernatant of P. polymyxa to a water bath at 65°C for 30 min 

or at 100°C for 10 min, or to an autoclave cycle at 121 °C under 15 psi for 15 min. In 

contrast, Seah et al. (2002) exposed the supernatant of B. subtilis to temperatures of 

70°C to 100°C in 10° increments each for 15 min (Seah et al., 2002). Other studies 

have severely tested the stability of the bacteriocin. A crude extract of a bacteriocin 

was exposed to temperatures of 100°C for up to 90 min (Zhu et al., 2000). Sample 

size for heat stability tests can range from 1.0 ml (Lyon and Glatz, 1991) to 500 ml 

(Bogovic-Matijasic et al., 1998). After exposure to elevated temperatures, 

supernatants are immediately iced to prevent any further effects due to heat. Well 

diffusion assays are typically conducted to determine the effect of heat on measured 

activity. 

Sensitivity to Enzymes. The proteinaceous nature of an antimicrobial 

molecule is usually tested by its sensitivity to proteolytic enzymes, which reduce or 

eliminate inhibitory activity in standard assays. Trypsin, neutrase, chymotrypsin, 

alcalase and pepsin are examples of proteolytic enzymes used. In one study, 

aliquots of culture supernatants were submitted to enzymatic treatments (2 :1 vol:vol 

supernatant to enzyme} for 5 h at 37°C. Well diffusion assays were conducted to 

determine loss of activity {Girardin et al., 2002). Ano#her method combined equal 

volumes of enzyme solutions and culture supernatant and incubated for 1 h at 37°C 
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(Zhu et al., 2000). Bogovic-Matijasic et al. (1998) challenged a standard volume of a 

bacteriocin preparation with several different concentrations of trypsin. 

Precipitation and Concentration of Bacteriocin. To remove and concentrate 

bacteriocin from culture supernatant addition of ammonium sulfate to the 

supernatant is generally employed. Various concentrations of ammonium sulfate are 

added slowly, with gentle stirring and at refrigeration temperatures, to allow proteins 

of different sizes to precipitate out at different ammonium sulfate concentrations 

(Muriana and Klaenhammer, 1991). The precipitated protein portion is recovered 

and can be further purified (Faye et al., 2000). Concentration of proteins by volume 

reduction can be accomplished by dialyzing the culture supernatant against 

polyethylene glycol (PEG). A portion of the supernatant is placed into dialysis tubing 

of appropriate size. The filled tubing is embedded in PEG and incubated at 4°C for a 

length of time that depends on sample size and degree of concentration required 

(Palk and Glatz, 1997). 

Protein Size. Protein size (molecular weight) can be determined by gel 

electrophoresis (SDS-PAGE), which separates proteins based on mass. Denaturing 

conditions using a reducing agent like mercaptoethanol are generally employed 

(Girardin et al., 2002; Yang et al., ~ 992; Du Toit et al., 2000; Bogovic-Matijasic et al., 

1998). Microcentrifugation using centrifuge tubes containing membranes with 

various molecular weight cut-offs can also be used to determine protein size (Seah 

et af., 2002). Well diffusion assays are conducted on the filtrates and the size of the 

active molecule can be determined by the presence or absence of inhibitory activity 

in filtrates {Seah et al., 2002). 
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Natura! Preservatives for Food Safety 

Consumers are demanding safe, stable, high-quality #oods processed with 

fewer chemical preservatives (Dufour et al., 2002; Brul and Coote, 1999; Cleveland 

et al., 2001; Devico, 2003). Consumers want more "natural" and minimally 

processed foods (Cleveland et al., 2001). Currently, natural preservatives are in 

limited use. 

Bacteriocins are naturally produced by microorganisms isolated from many 

foods and have contributed to the safety of food for many years. They have been 

consumed for centuries in meat and dairy products through the natural presence of 

Lactobacillus sp. (Cleveland et al., 2001). Their commercial use in food systems, 

however, is limited to nisin, which has been in use as a food preservative for 50 

years. 

Factors that will affect the efficacy of bacteriocins include emergence of 

bacteriocin-resistant microbial strains, the proteolytic action of enzymes in the 

environment in which the bacteriocin is used, inactiva#ion by other additives or 

treatmen#s, and/or poor distribution throughout the delivery system {Schillinger et al., 

1996). 

The use of bacteriocins as natural preservatives is an emerging area in food 

microbiology (Montville et al., 2001). In the fiuture, bacteriocins may find value as 

stand-alone intervention technologies or may have applications as part of a hurdle 

approach to enhance the safety of foods (Cleveland et al., 2001). 
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MATERIALS AND METHODS 

Bacterial Strains 

Two field strains of Campylobacter jejuni were provided by Dr. Irene Wesley 

of the National Animal Disease Laboratory in Ames, Iowa. Strain NADC 8373 was 

isolated from a turkey and strain NADC 5161 was isolated from poultry. Each strain 

was collected by a carcass swab of a healthy animal. Working cultures were 

propagated from frozen stocks in brain heart infusion broth with 0.8% yeast extract 

(BHIYE) at 42°C under microaerophilic conditions in the CampyPak PIusT"" system 

(BBL, Sparks, MD). Cultures were maintained for up to one week at 4°C under 

microaerophilic conditions on BHIYE agar to which 10% defibriated sheep blood 

.(Hema Resources and Supply, Inc., Aurora, OR) was added. 

A total of twelve potential bacteriocin-producing bacteria were selected for 

research and secured from the American Type Culture Collection, Manassas, VA or 

from Kemin Industries, Des Moines, Iowa. A literature search identified 

microorganisms of these species as producing antagonist activity against Gram-

negative bacteria, but the specific ATCC strains used in this research were not 

necessarily the same as those used in previous research. 

Working cultures were propagated under the conditions suggested by the 

American Type Culture C011ection. Strains and culture conditions are listed in the 

following table. 
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Table 1: Selected bacteriocin-producing organisms and growth parame#ers utilized 
in this research. 

Microorganism Culture Broth Incubation 

Conditions 

Lactobacillus delbrueckii subspecies 
bulgaricus (ATCC 11842) 

Lactobacillus delbrueckii subspecies 
lactis 
(ATCC 4797) 

Lactobacillus acidophilus 
(ATCC 4356) 

Lactobacillus plantarum 
(Kemin Industries proprietary strain) 

Lactobacillus acidophilus 
(Kemin Industries proprietary strain) 

Lactobacillus bulgaricus 
(Kemin Industries proprietary strain) 

Lactobacillus casei 
(ATCC 393) 

Propionibacterium thoenii 
(ATCC 4874) 

Streptococcus salivarius 
(ATCC 13419) 

Paenibacillus polymyxa 
(ATCC 842) 

Paenibacillus polymyxa 
(ATCC 43865) 

Lactococcus lactis subspecies lactis 
(ATCC 11454) 

MRS 

MRS 

MRS 

MRS 

MRS 

MRS 

MRS 

M17 

TSB 

37°Clanaerobic 

37°C/anaerobic 

37°C/anaerobic 

37°C/anaerobic 

37°C/anaerobic 

37°Clanaerobic 

37°C/m icroae roph i I is 

30°C anaerobic 

37°C/aerobic 

TSB or J-broth ° . 30 C/aerobic 

TSB or J-broth ° . 30 C/aerobic 

BHI 37°C/aerobic 
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All growth media were purchased from Difco (Becton-Dickinson &Company, 

Sparks, MD). The J-broth, consisting of 5 g/L tryptone (Fisher Scientific, Fair Lawn, 

NJ), 15 g/L yeast extract (Difco), 3 g/L K2HPO4 (Fisher Scientific), and 2 g/L 

dextrose (Kemin Industries), was custom-prepared in this laboratory. Anaerobic 

growth conditions were met by the use of GasPak PIusT"" Anaerobic System (BBL, 

Sparks, MD). 

All incubation equipment utilized in this research was calibrated to t2°C of the 

set temperature. 

Bacterial Culture Preparation 

All bacterial cultures used in this research were prepared for frozen storage 

according to guidelines provided by the American Type Culture Collection. Each 

culture was propagated in 10 ml sterile growth medium according to its specific 

requirements. After incubation cultures were centrifuged at 2500 x g for 15 min. 

The supernatant was discarded and the pellet was resuspended in 5 ml of an 

appropriate culture medium. Five milliliters of a 20% glycerol solution were added 

and the entire contents thoroughly mixed. One-milliliter aliquots were aseptically 

dispensed into cryogenic vials and stored at —80°C for future use. 

Working cultures were prepared fresh for each assay. Frozen stocks were 

thawed, then inoculated into the appropriate medium and incubated under conditions 

dictated by the specific microorganism. 

Preliminary Screening Assays 

Agar spot and well diffusion assays were conducted to determine if the 

selected producer organisms exhibited antagonistic activi#y toward either of the two 

strains of C. jejuni. 
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Agar Spot Assay 

The procedure of Lewus and Montville (1991) was followed. Petri dishes 

containing tryptic soy agar (Difco) with 0.6% yeast extract (TSAYE) were prepared 

and dried overnight at room temperature. A 2-ul aliquot of each producer organism 

from an overnight culture was spotted onto the surface of the prepared agar plates 

and incubated overnight under conditions appropriate for each organism. After 

incubation, the spotted agar was gently and aseptically loosened and flipped into the 

lid. The flipped agar was overlayed with approximately 8 ml of BHIYE agar that was 

seeded with 105-106 cfu/ml of C. jejun% The plates were allowed to solidify and then 

incubated overnight at 42°C under microaerophilic conditions. 

Inhibition of C. jejuni growth was determined by measuring the diameter (in 

millimeters) of the zone of clearing around each spot. The smallest de#ectable zone 

was 1 mm beyond the spot. 

Well Diffusion Assay 

A well diffusion assay similar to that of Lewus and Montville (1991) was 

followed, with minor modifications. Cell-free supernatants of 24-48 h cultures of the 

test strains were collected by centrifugation at 2500 x g for 15 min. Alternatively, 

larger volumes of producer cultures (200 ml) were centrifuged at 8000 x gfor 15 

min. The TSAYE plates were prepared a day in advance and allowed to dry 

overnight. Then BHIYE agar seeded with 105-106 cfu/ml C. jejuni was overlayed 

onto the TSAYE plates and allowed to solidify. Three wells per plate were 

aseptically cut into the agar plates with a sterile #5 cork borer. Each well was filled 

with 100 ul of the producer culture supernatant. The plates were kept at 4°C for a 

minimum of 4 h to facilitate supernatant absorption while delaying the growth of C. 

jejuni. The plates were incubated overnight at 42°C under microaerophilic 

conditions. 
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inhibition of C. jejuni growth was determined by measuring the diameter (in 

millimeters) of the zone of clearing around each well. The smallest detectable zone 

was 1 mm beyond the pre-cut well. 

Optimized Growth Parameters for Enhancement of Bacteriocin Production 

The alternative growth medium (J-Broth) recommended by Girardin et ai. 

(2002) was used to propagate both P. polymyxa strains. A frozen stock of P. 

polymyxa was inoculated into 5 ml of J-Broth and incubated at 30°C for 24 h under 

aerobic conditions. The entire 5 ml were dispensed into a fresh flask containing 200 

ml sterile J-Broth. The flask was incubated for 48 h on a shaking water bath at 

30°C. The contents of the flask were centrifuged at 8000 x g for 15 min to obtain a 

cell-free supernatant, which was then stored at 4°C until used. 

Concentration of Bacteriocin with PEG 

Concentration of the protein was accomplished by dialysis using 500 Da 

dialysis tubing (Spectra/Por CE, Spectrum Laboratories, Rancho Dominquez, CA). 

Dialysis tubing was wetted with deionized water for approximately 30 min prior to 

use to remove any residual sodium azide. Approximately 200 m! of supernatant 

were placed into the dialysis tubing which was then pinched closed at both ends. 

The tubing was embedded in polyethylene glycol (PEG: MW 15,000-20,000; Sigma, 

St. Louis, MO) on a flat tray. The sample was held at 4°C for 3-4 h or until 

approximately 25% of the initial volume remained in the tubing. The membrane was 

squeezed by gloved hands and the contents placed into a sterile tube. The 

concentrated su ernatant was stored at 4°C for use the same da or at —20°C if held p Y 
longer. 
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Effects of Incubation Time on Celi Growth and Bacteriocin Production 

Two frozen stock cultures of P. polymyxa 842 were propagated in 5 ml J-

Broth aerobically for 24 h at 30°C. Each culture was transferred to a separate 200-

ml flask of J-broth and incubated for an additional 24-48 h in a shaking water bath at 

30°C. At the end of the incubation period, a 10-m1 aliquo# was removed and the 

OD405 was measured via a SpectraMax microtiter plate reader. Each culture was 

thoroughly mixed when sampled and again prior to OD measurement. Supernatants 

were obtained via centrifugation at 8000 x g for 15 min, and were held at 4°C until 

use. Well diffusion assays were conducted to ascertain bacteriocin activity as a 

function of incubation time. 

Effects of Temperature on Cell Growth and Bacteriocin Production 

Frozen cultures of P. polymyxa 842 were initially grown in four 5-ml tubes 

(one seed/tube) of J-Broth for 24 h at 30°C. The contents of all four tubes were 

combined, mixed thoroughly, and 5-ml aliquots were subsequently dispensed into 

individual 200-m1 flasks of sterile J-Broth. Each flask was incubated in a shaking 

water bath for 48 h at either 25°C, 30°C (control), 37°C or 45°C. At the end of the 

incubation period, a 10-m1 aliquot was removed and the OD4o5 was measured via a 

SpectraMax microtiter plate reader. Each culture was thoroughly mixed when 

sampled and again prior to OD measurement. Supernatants were obtained via 

centrifugation at 8000 x g for 15 min, and were held at 4°C until use. Well diffusion 

assays were conducted on unconcentrated supernatants. 
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Effects of pH on cell Growth and 8acteriocin Production 

Four 200-m1 flasks of J-Broth were each adjusted to one of four selected pH 

levels: 5.0, 6.0, 7.4 (normal) and 8.0. The pH values were measured using a 

Corning pH/Ion Analyzer 355. A P. polymyxa 842 culture was first propagated in J-

Broth at pH 7.4 #or 24 h, then dispensed into the 4 flasks and incubated in a shaking 

water bath at 30°C for 24 h. No attempt was made to adjustor control pH during this 

incubation. At the end of the incubation period, the pH, optical density, and 

antimicrobial activity in the well diffusion assay were measured for each culture. 

Effects of Enzymes on Bacteriocin Activity 

Four proteases and catalase were tested for their effect on the antimicrobial 

activity of P. polymyxa. Pepsin (Sigma P-7012), chymotrypsin (Sigma C-4129), 

neutrase (Novozyme Lot # 68321), alcalase (Novozyme Lot #unknown), and 

catalase (Sigma C-9322) were prepared as solutions of 1 mg/ml enzyme in sterile 

Butter#ield's phosphate buffer. The enzymes were tested for their effect on 24-h P. 

polymyxa supernatants in the following assays of antimicrobial activity against 24-h 

cultures of C. jejuni. 

Method 1 

In the standard well diffusion assay, a 10-u1 aliquot of enzyme solution was 

spotted near the edge of each well to which 100 ul of supernatant had been added. 

The plates were held overnight at room temperature to allow the supernatant and 

enzyme spots to absorb, then overlayed with BHIYE agar seeded with 105-106 cfu/ml 

of C. jejuni. After incubation at 42°C overnight under microaerophilic conditions, any 

disruption in the zone of inhibition was noted. Such disruption in the presence of 

proteolytic enzymes indicated that the inhibitor was a protein. Disruption in the 
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presence of catalase indicated that hydrogen peroxide {H2O2) contributed to the 

inhibition. 

Method 2 

Dilutions of enzyme preparations were tested for their effects in the well 

diffusion assay. A 1.0 mg/ml solution of each enzyme was diluted 1:2 and 1:10 in 

sterile Butterfield's phosphate buffer. After 100 ul of culture supernatan# were added 

to the wells in TSAYE plates, the plates were held at 37°C for 2 h to #acilitate 

absorption of the supernatant. Then, 5-ui aliquots of enzyme preparations were 

spotted next to the wells, and the plates were held at 37°C for an additional hour to 

facilitate absorption of the enzyme solution. Plates were then overlayed with BH1YE 

agar seeded with 105-106 cfulml of C. jejuni. All plates were incubated at 42°C 

overnight under microaerophilic conditions and zones of inhibition were noted. 

Method 3 

Equal aliquots of producer supernatants and .enzyme solutions (1 mg/ml) 

were combined and incubated at room temperature for 1 h. Aliquots {100 ul) of the 

mixtures were dispensed into pre-cut wells in TSAYE plates and allowed to absorb 

overnight at room temperature. Each plate was overlayed with BH1YE agar seeded 

with 105-106 cfu/ml of C. jejuni. All plates were incubated at 42°C overnight under 

microaerophilic conditions and zones of inhibition were measured. 

Effects of Dilution on Bacteriocin Activity 

Cell-free supernatants of 48-h cultures of P. polymyxa 842 and P. polymyxa 

43865 were concentrated to approximately one-fourth of the original volume using 

polyethylene glycol as described above, or were left unconcentrated. Dilutions {1 :2, 

1:5 and 1:10 in sterile water} were made from both concentrated and 

unconcentrated supernatants and were tested in well diffusion assays. The titer of 
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the bacteriocin was defined as the reciprocal of the highest dilution that gave a 

measurable zone of inhibition (1 mm beyond the well). 

Effects of Time and Temperature on Bacteriocin Activity 

Both concentrated and native supernatants of P. polymyxa 842 were held for 

21 days at room temperature, 4°C, and -20°C. On a weekly basis, each supernatant 

preparation was assayed for activity in the well diffusion assay. 

Effects of Elevated Temperature on Bacteriocin Activity 

The heat stability of the bacteriocin produced by P. polymyxa 842 was 

determined by submerging 2-ml aliquots of supernatant of a 24-h culture in 60°C, 

80°C and 100°C water baths for 10 min and by exposing an aliquot to a standard 

autoclave cycle of 121 °C, 15 psi for 15 min. Following exposure to elevated 

temperatures, all test tubes were immediately immersed in an ice bath. The activity 

of the sample was then measured in the well diffusion assay. 

Determination of Protein Size 

The size of the P. polymyxa bacteriocin was determined by the use of 

microcentrifuge tubes: Centricon YM-3, YM-10, YM-30 and Biomax-5 

(Millipore,Bedford, MA) rated at 3000 MWCO (molecular weight cut-off), 5000 

MWCO, 10,000 MWCO and 30,000 MWCO, respectively. Fresh cultures of P. 

polymyxa 842 were grown in J-Broth as outlined previously. Supernatants were 

prepared from 24-h cultures of P. polymyxa 842 as described previously, and 

centrifuged in these microcentrifuge tubes according to the manufacturer's directions 

as noted in Table 2. 
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Table 2: Conditions for centrifugation of samples in microcentrifuge tubes with 
different molecular weight cut-offs (MWCO) for determination of protein size. 

MWCO Centrifuge Speed Centrifuge Time Sample Amount 

3000 

5000 

10,000 

30, 000 

7500 

7500 

5000 

5x00 

2h 2.0 m1 

10 min 0.5 ml 

1 h 2.0 m I 

30 min 2.0 ml 

All centrifugation procedures were conducted at room temperature to facilitate 

flow through the membrane filter. Well diffusion assays were conducted using the 

filtrate for each MWCO, and zones of inhibition were measured. Size of the 

antimicrobial protein was determined by the lowest MWCO at which inhibitory 

activity was noted. Both freshly prepared and two-week old supernatants 

{maintained at 4°C) were tested for activity with and without microcentrifugation. 
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RESULTS AND DISCUSSION 

Screening for antagonistic microorganisms 

Initial screening of producer microorganisms for inhibition of C. jejuni was 

conducted using agar spot and well diffusion assays. In the agar spot assay, 12 

organisms (listed in Materials and Methods) were tested for inhibition of C. jejuni. 

Three 2-ul spots for each organism were placed on a single agar plate to determine 

inhibition. Four of 12 organisms - Lc. lactis 11454, S. salivarius 13419, P. polymyxa 

842 and P. polymyxa 43865 -displayed some degree of inhibition of C. jejuni 

g rowth. Table 3 gives the average zone of inhibition for the three replicate spots for 

these organisms. 

Table 3: Diameter of zone of inhibition (mm) of C. jejuni by selected microorganisms 
in an agar spot assay 

C. jejuni Indicator Strain 

5161 8373 

Producer organism 

S, salivarius ATCC 13419 n.d. 7.5 

P. polymyxa ATCC 43865 9.0 8.0 

P. polymyxa ATCC 842 17.5 16.0 

Lc. lactis ATCC 11454 7.0 7.0 

n.d. =Zone diameter not determined because of damage to plate. 

Results of this screening assay suggested that P, polymyxa 842 produced the 

highest level of inhibition against both C. jejuni strains. 

Culture supernatants from the 12 organisms were nex# tested in well diffusion 

assays. The initial protocol included passage of the supernatant through a 0.22 ,u 
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filter prior to testing to eliminate any residual bacterial cells, None of the filtered 

supernatants showed inhibitory activity in the well diffusion assay (data not shown). 

In subsequent assays, the filtration step was eliminated. Whole bacterial cultures 

after 48 h incubation and the supernatants of these cultures (after centrifugation at 

2500 x g) were tested, Again, four of 12 strains showed inhibitory activity. Results 

are presented in Table 4. 

Table 4: Diameter of zone of inhibition (mm) of C. jejuni by whole cultures and 
unfiltered culture supernatants of selected microorganisms in the well diffusion 
assay 

C, jejuni Indicator Strain 

5161 8373 

Producer organism 

S, salivarius 13419 whole culture 23.7 20.0 

culture supernatant 15.0 6.7' 

P. polymyxa 43865 whole culture 20.0 20.0 

culture supernatant 20.7 19.3 

P. polymyxa 842 whole culture 27,7 30.0 

culture supernatant 25.0 2 

Lc. lactis 11454 whole culture 18.3 18.0 

culture supernatant 16.0 19.0 

'one of three wells showed inhibition 
2no zone was completely clear; microbial colonies were present within zone area 
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Inhibition was seen with the unfiltered supernatant as well as the whole 

culture for the same four strains that showed inhibitory activity in the spot assay. It 

is possible that the antimicrobial material produced by the cultures was retained by 

the membrane filter in the earlier trials. 

Again, P. polymyxa 842 produced the largest zones of inhibition. 

Effects of enzymes on antimicrobial substances 

To investigate the nature of the inhibitory substances produced by the test 

cultures, the supernatants of Lc. lactis 11454, P. polymyxa 842, P. polymyxa 43865 

and S. salivarius 13419 were exposed to various enzymes. Proteases would be 

expected to reduce or eliminate inhibitory activity if the active molecule was a 

protein, while catalase would affect the zone of inhibition if the active agent was 

hydrogen peroxide (H2O2). 

Effects of both proteases and catalase were evaluated by three methods, 

each utilizing a well diffusion assay. Appropriate controls were incorporated to test 

whether or not the enzyme or the phosphate buffer used to prepare the enzyme 

solutions inhibited C. jejuni. 

The initial assay was conducted with enzymes at a concentration of 1 mg/mi. 

A 10-u1 aliquot of enzyme solution was spotted near the edge of the pre-cut well. 

Loss of inhibitory activity due to enzymatic action was indicated by microbial growth 

at the enzyme spot. No loss of inhibitory activity was evidenced by a clear zone 

devoid of microbial growth. Results are noted in Table 5. 
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Both catalase and the various proteases disrupted the zone of inhibition fior all 

tested supernatants. These results suggest that both protein material and hydrogen 

peroxide contributed to the inhibitory activity. With a few exceptions, growth of both 

indicator strains was observed after denaturation of the active molecule. /n vitro 

variation is known to occur when assaying membrane-active peptides and could 

account for strain-to-strain variations (Giacometti et al., 1998). 

A second analysis was conducted to determine the effect of different 

concentrations of enzymes on the inhibitory activity of the culture supernatan#s 

against C. jejuni 5161. This organism was chosen as indicator rather than strain 

8373 because greater effects of enzymes were seen with this strain (refer to Table 

5). Dilutions of the stock enzyme solutions at 1:2 and 1:10 were evaluated (final 

enzyme concentrations of 0.5 and 0.1 mg/ml, respectively). A 5-ul aliquot was 

spotted near the edge of a pre-cut well. Loss of inhibitory activity due to enzymatic 

action was indicated by microbial growth at the enzyme spot. No loss of inhibitory 

activity was seen with a clear zone devoid of microbial growth. Results are 

summarized in Table 6. 
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Table 6: Presence (+) or absence (-) of inhibitory activity against C. jejuni 5161 in 
culture supernatants exposed to dilutions of proteolytic enzymes and catalase. 

Producer Organism Enzyme Undiluted 1:2 Dilution 1:10 Dilution 

(1 mg/ml) (0.5 mg/ml) (0.1 mg/ml) 

Lc. lactis 11454 Alcalase - - -

Neutrase - - -

Chymotrypsin - - -

Pepsin - - -

Catalase - + + 

Phosphate Buffer + 

S. salivarius 13419 Alcalase - - -

Neutrase - - -

Chymotrypsin - - -

Pepsin - - -

Catalase - - -

Phosphate Buffer + 

P. polymyxa 842 Alcalase + + + 

Neutrase - + + 

Chymotrypsin + + + 

Pepsin - - -

Catalase - - -

Phosphate Buffer + 

P. polymyxa 43865 Alcalase - - -

Neutrase - - -

Chymotrypsin - - -

Pepsin 

catalase - + + 

Phosphate Buffer + 

+ = presense of inhibitory activity noted by clear zone of inhibition 
- = loss of inhibitory activity noted by microbial growth within area exposed to enzyme 
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These results again suggest that both proteins) and hydrogen peroxide 

contributed to the observed inhibi#ory activity, although a few differences in results 

between this trial and the previous trial were observed. While the same enzyme 

concentration was used as in the first trial, the enzyme spot applied in the second 

assay was only half the volume that was applied in the first test. Alcalase and 

chymotrypsin inactivated the inhibitory molecule in the undiluted supernatant of P. 

polymyxa 842 in the first trial, but were not effective in the second trial. This could 

be a result of variation observed in in vitro analyses or a reflection of the different 

enzyme volume used. If a high concentration of inhibitor was present, perhaps there 

was not enough enzyme to negate all inhibitory activity. The reduction in noticeable 

effects of these enzymes with dilution suggests that just enough enzyme was 

present in the undiluted samples to inactivate the amount of inhibitor present. 

In the final trial, equal aliquots of producer supernatant and enzyme solutions 

were combined and incubated at room temperature for 1 h before the mixture was 

added to the wells in the well diffusion assay. Presence or absence of a zone of 

inhibition around the wells was noted. The results are shown in Table 7. 
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The absence of a zone of inhibition for the Lc. lactis and S. salivarius 

supernatants suggests #hat the inhibitory factors) were denatured, destroyed, or 

diluted below their threshold of activity against the C, jejuni strains. The 

supernatants of both P. polymyxa strains retained inhibitory activity after some or all 

of these enzyme treatments. The antimicrobial substances) produced by these 

strains may not be proteinaceous, may be a mixture of active compounds, or may be 

unaffected by the concentrations of proteoly#ic enzymes used. 

While the effects of the enzymes on the inhibitory activity of the culture 

supernatants varied wi#h the methodology used, the results of these experimen#s 

suggest #hat both proteins) and hydrogen peroxide contribute to inhibition of C. 

jejuni. It was important to select a single organism for further study of the inhibitory 

factors) produced; P. polymyxa 842 was chosen for such further study because it 

inhibited C. jejuni growth in most assays, 

Initial characterization of a possible bacteriocin produced by P, polymyxa 842. 

In the initial stages of this research, tryptic soy broth (TSB) was used as the 

growth medium for P, polymyxa. However, results were not consistent and 

inhibitory activi#y was not reliably produced. Based upon work conducted by 

Girardin et a1. (2002), a new growth medium was considered for the propagation of 

P. polymyxa 842. Girardin et al. investigated an antimicrobial protein produced by P. 

polymyxa 21189 and its efficacy against C. botulinum. They grew the organism in 

J-Broth and produced consistent levels of inhibitory activity in this medium. In the 

current study, when J-Broth was made and used to grow P. polymyxa 842, 

consistent production of inhibitory activity toward C, je~►uni was observed. For a!1 
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subsequent experiments, P. polymyxa 842 was grown in J-Broth as described in 

Materials and Methods. 

According to Muriana and Luchansky, optimization of growth media can 

enhance the production of bacteriocins and possibly contribute to greater yields of 

purified protein product {Muriana and Luchansky, 1993). 

Effects of dilution on antimicrobial activity 

To determine the degree to which culture supernatant could be diluted and 

still show measurable inhibitory activity, supernatants that had been stored at —20°C 

for 7 days were assayed for activity. Both native supernatant and supernatant that 

had been concentrated 4:1 were tested undiluted and at various dilutions in the well 

diffusion assay. Results are shown in Table 8. 

Table 8: Diameter (mm) of zones of inhibition in a C. jejuni lawn produced by various 
dilutions of native and concentrated supernatants of P, polymyxa 842. 

C. jejuni indicator Strain 
5161 8373 

Starting form of 
supernatant Native Concentrated Native Concentrated 

Undiluted 

1:2 

1:5 

1:10 

19.3 

19.3 

14.3 

0.0 

20.3 21.0 22.3 

16.7 17.3 23.0 

6.7' 17.0 19.32

5.73 0.0 18.7 

' 1 well was surrounded by a faint zone of clearing; no zone observed around the remaining two wells; value 

2 hown is the average of 20 mm plus two zone diameters of 0 
3 of 3 zones were faint 

31 well was surrounded by a clear zone; no zone observed around the remaining two wells; value shown is the 
average of 17 mm plus two zone diameters of 0 
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Inhibitory activity was seen at dilutions up to 1:5 of the native supernatant, and at the 

1:10 dilution of the supernatant that had been concentrated 4-fold. As an inhibitory 

activity unit can be defined as the reciprocal of the highest dilution at which inhibition 

is seen (Muriana and Klaenhammer, 1991) and as 100 ul of supernatant was used 

per well, the calculated number of activity units per ml of native culture supernatant 

is 50. The calculated activity units per m1 of concentrated supernatant is 100. 

Effects of #ime and temperature on antimicrobial activity 

To determine the stability of the antimicrobial activity present in supernatant 

during storage at various temperatures, sterile culture tubes containing 10 ml of 

either native or concentrated (3:1) supernatants were stored at 4°C, room 

temperature (25°C) and —20°C for 21 days. On a weekly basis, well diffusion assays 

were conducted; results are shown in Tables 9 and 10 for C. jejuni indicator strains 

5161 and 8373, respectively. 
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Table 9: Antimicrobial activity toward C. jejuni 5161 as determined by zone 
diameter (mm) of supernatants of P, polymyxa 842 stored up to 21 days at various 
temperatures. 

Indicator Strain C. jejuni 5161 

Supernatant Native Concentrated 

Day 

0 0.0' 19.6 

-20°C 4°C 25°C -20°C 4°C 25°C 

7 

14 

21 

20.0 6.0 2 19.6 17.7 21.0 20.6 

19.0 19.0 17.0 LA3 20.3 20.0 

17.3 19.7 19.3 20.0 20.7 19.3 

' 0 of 3 zones exhibited inhibition due to poor absorption of supernatant 
~ 1 of 3 zones exhibited inhibition due to poor absorption of supernatant 3 Lab accident; failure to add C. jejuni overlay 

Table 10: Antimicrobial activity toward C. jejuni 8373 as determined by zone 
diameter (mm) of supernatants of P, polymyxa 842 stored up to 21 days at various 
temperatures. 

Indicator Strain C. jejuni 8373 

Supernatant Native Concentrated 

Day 

0 17.3 19.0 

-20°C 4°C 25°C -20°C 4°C 25°C 

7 

14 

21 

0.0' 20.0 20.0 17.0 18.7 21.0 

19.0 19.3 19.3 17.0 19.6 18.3 

18.7 i 6.0 18.3 18.7 20.3 19.7 

'0 of 3 zones exhibited inhibition due to poor absorption of supernatan# 
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Both native and concentrated supernatants seemed to be stable during storage for 

up to 21 days at the tested temperatures; diameters of zones of inhibition did not 

vary appreciably for supernatants over all storage times. However, the zone of 

inhibition around the concentrated supernatant was consistently clearer than the 

zone around the native supernatant. This difference in the percent of indicator cells 

able to grow in the presence of the inhibitor may simply reflect the difference in the 

number of molecules of inhibitor present in the native vs. concentrated supernatant. 

Figure 1 shows the zones of inhibition produced by the concentrated supernatant 

after 21 days of storage. By day 21, the zone of inhibition around the concentrated 

supernatant that had been stored at —20°C was no longer clear. It is possible that 

some change was beginning to occur in the inhibitory substances} at this storage 

time and temperature. 

Figure 1: Activity noted on Day 21 of concentrated supernatant samples of P. 
polymyxa 842 stored at 4°C, room temperature and —20°C against one strain of C. 

jejuni. Samples stored at —20°C retained activity but zones were faint and not easily 
viewed . 

Temperatures as low as —20°C have been shown to increase inhibitory 

activity. This may be the result of conformational changes in the tertiary structure of 

the protein that increase its affinity for the target cells (Hsieh and Glatz, 1996). 
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Stability of native and concentrated supernatants over longer storage periods at 

various temperatures should be studied. 

Effects of elevated temperature on antimicrobial activity 

The effect of elevated temperatures on antimicrobial activity was evalua#ed by 

exposing aliquots of both native and concen#rated {3:1) supernatants to various 

temperatures. Two-milliliter aliquots of undiluted and diluted (1 :2 and 1;5 dilutions in 

sterile distilled water) supernatant were placed in a waterbath set to 60°C, 80°C or 

100°C. Exposure time for each aliquot at the test temperature was 10 minutes. To 

test an extreme condition, 2-ml samples of undiluted native and concentrated 

supernatant were subjected to a standard autoclave cycle (121 °C, 15 psi, 15 min). 

All heated samples as well as unheated controls were tested in the well diffusion 

assay. Results of well diffusion assays for inhibitory activity in heated preparations 

against C. jejuni indicator strains 5161 and 8373 are shown in Tables 11 and 12, 

respectively. 
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Native supernatant retained measurable antimicrobial activity when diluted 1:2 but 

not when diluted 1:5. Diameters of zones of inhibition were similar for the various 

heated samples, and for both indicator strains. Concentrated supernatants 

produced larger zones of inhibition than the comparable native supernatants at all 

dilutions and al! temperature treatments. These supernatants retained measurable 

activity at the 1:5 dilution. In a similar experiment no antimicrobial activity was 

detected in concentrated supernatant diluted 1:10, heated or unheated {data not 

shown). The inhibitory agent{s) appear to be very heat-stable. 

Effects of Incubation Temperature on Antimicrobial Activity 

Incubation temperature #or growth of the producer organism was evaluated 

for its effect on production of inhibitory activi#y. Individual cultures of P. polymyxa 

were incubated at four temperatures for 48 h. Culture growth was measured by 

optical density (OD), and inhibitory activity was measured by size of the zone of 

inhibition in a well diffusion assay. Results are shown in Table 13. 

Table 13: Growth (optical density) and production of antimicrobial activity (diameter 
of zone of inhibition) by P. polymyxa 842 after incubation for 48 h at four different 
temperatures. 

Incubation Optical Density Diameter of zone of inhibition with C. jejuni 

Temperature Indicator Strain 

5161 8373 

25°C 1.234 0.0 0.0 

30°C 0.590 16.3 16.7 

37°C 0.621 4.6 5.0 

45°C 0.103 0.0 0.0 
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Optical density of P. polymyxa was highest at 25°C, lowest at 45°C, and 

about the same intermediate value at 30°C and 37°C. These measurements are 

averages of four microtiter plate wells. 

The incubation temperature of P. polymyxa 842 was critical to the production 

of antimicrobial activity. While the producer organism grew over the entire 

temperature range tested, inhibitory activity was detected only in cu!#ures grown at 

30°C and 37°C. In well diffusion assays, all three replicate tests of the 30°C 

supernatant showed clear zones of inhibition, white only one out of three replicates 

of the 37°C su ernatant roduced a clear zone. This su ests that the active p p gg 

molecule may be produced at a higher level or may be more stable when P. 

polymyxa is incubated at 30°C. A similar organism, Bacillus subtilis, was shown to 

exhibit greatest antimicrobial activity when grown at its optimum growth temperature 

of 37°C (Seah et al., 2002). 

Effects of Incubation Time on Antimicrobial Activity 

To determine the incubation time in which antimicrobial activity was produced, 

supernatants of P. polymyxa cultures were taken at 24 h and 48 h of incubation at 

30°C and tested in the well diffusion assay. Results are summarized in Table 14. 
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Table 14: Culture growth (optical density) and antimicrobial activity (diameter of 
zone of inhibition) production by P. polymyxa after 24 or 48 h incubation at 30°C. 

Zone (mm) of inhibition against 
C. jejuni Indicator Strain 

Incubation Time Optical Density 5161 8373 

24 h 1.185 19.7 20.0 

48 h 1.172 15.3 15.7 

Growth as measured by optical density was similar at both time periods; little or no 

additional microbial growth occurred after 24 h. However, inhibition of both C. jejuni 

strains was greater for 24-h supernatant than for 48-h supernatant. These data 

suggest that production of antimicrobial molecules occurred during logarithmic 

phase and that activity was diminished with extended incubation time. Production of 

other antimicrobial molecules has been reported to occur during different growth 

phases, and a decline in activity after the early stationary phase of microbial growth 

has been seen with other antimicrobials (Parente et al., 1994; Venema et al., 1997; 

(Hsieh et al., 1996). 

Effects of pH on Antimicrobial Activity 

The effects of pH on the production of the antimicrobial molecule were tested 

by growing cultures of P. polymyxa 842 at 30°C for 24 h in J-Broth adjusted to pH 

5.0, 6.0, 7.4 (control) and 8.0. No adjustments to the pH were made during the 

incubation period. The pH was measured initially and again immedia#ely after the 

incubation period. Results are shown in Table 15. 
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Table 15: Growth (optical density) and production of antimicrobial activity (diameter 
of zone of inhibition) by P. polymyxa 842 in broth adjusted to different starting pH 
values. 

pH Zone of Inhibition (mm) 

Initial Post 24 h incubation Optical Density C. jejuni Indicator Strain 

Target (Actual) 5161 8373 

5.0 (5.007) 

6.0 (6.002) 

7.4 (7.356) 

8.0 (8.030) 

4.84 

5.39 

5.97 

6.27 

1.010 0.0 0.0 

1.092 13.3' 14.0 

1.207 20.0 19.0 

1.326 19.0 17.3' 

' zones were irregular in shape and some microbial growth within the zone was observed 

The culture grew well at all starting pH values, with higher final optical 

densities being reached in cultures starting at the higher pH values. Acid was 

produced by all cultures so final pH values were lower than starting values. Only the 

culture started at pH 8.0 remained above pH 6.0. 

Inhibitor was made at starting pH values of 6.0, 7.4, and 8.0, but zones were 

most consistent and zone diameters were greatest when P. polymyxa was incubated 

at a s#arcing pH of 7.4. Sterile J-Broth adjusted to the pH values of the 24-h cultures 

showed no inhibitory activity in the well diffusion assay, so inhibition was not caused 

by low pH. These data suggest that pH affects the production and stability of the 

inhibitor. It is possible that inhibitor production was greatest at pH 7.4, or the 

inhibitor, once produced, was most stable at the final pH of 6.0, or the inhibitor was 

most effective at the final pH of 6,0. Both the production and stability of the 

preformed inhibitor should be evaluated at different pH levels. 
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Bizani and Brandelli (2002) tested the stability of a preformed bacteriocin by 

adjusting the pH of the culture supernatant between pH 3.0 and 11.0 and incubating 

for 1 h at 25°C before testing inhibitory activity. While the inhibitor was initially 

produced at pH 7.5 to 8.5, approximately 65-100% of the activity remained in pH 

environments between 5.0 and 8.0. 

A number of bacteriocins exhibi# greater activity at pH <5 than at physiological 

pH, with maximum adsorption to cell sur#aces at pH 6.0 {Jack et al., 1995; Yang et 

al., 1992). Maximum inhibitory activity was observed fora 8. subtilis strain toward C. 

perfringens and C. jejuni at pH 6.2 (Seah et al., 2002). 

Determination of Protein Size 

To determine the size of the proteins) with antimicrobial activity, native 

supernatant was centrifuged in microcentrifuge tubes containing ultrafiltration filters 

at four molecular weight cut off (MWCO) levels. Well diffusion assays were 

conducted on filtrates that had been freshly prepared or stored at 4°C for 2 weeks. 

Measured activity from each MWCO is shown in Table 16. 
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With no activity detected in the filtrate of the 3000 Da cut-off membrane but 

with activity detected in all other filtrates, molecules) responsible for the 

antimicrobial activity must be in the size range between 3000 and 5000 Da. This is 

the protein size for Class I or Class 11 bacteriocins (Ouweland, 1998). Activity 

seemed to be unstable to storage, as stored samples were less consistent in activity 

than fresh preparations. Similar results were obtained with both strains of C. jejuni 

as indicator organisms. 
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SUMMARY 

Na#urally produced antimicrobial substances, proteinaceous in nature and 

exhibiting antagonist effects towards two C. jejuni strains, were sought in this 

research. while four bacteria exhibited some degree of inhibitory activity against C. 

jejuni, Paenibacillus polymyxa 842 was selected for further research and 

characteriza#ion as it produced the largest zones of inhibition in well diffusion and flip 

agar assays. The results of enzyme challenges suggested that both hydrogen 

peroxide and proteinaceous material contributed to the measured inhibition. 

Concentrated and native forms of culture supernatant of P. polymyxa were 

subjected to a number of characterization assays. Larger zones of inhibition in all 

analyses were produced by the concentrated supernatant. The native supernatant 

contained 50 activity units (AU) per ml of inhibitory activity, while the 4-fold 

concentrated supernatant contained 100 AU/ml. 

Antimicrobial activity was retained after storage at —20°C, 25°C and 4°C for 

up to 21 days. Both concentrated and native supernatants were assayed with 

minimal decreases in zone size observed under these conditions. Zones of 

inhibition were clearer for the concentrated supernatant at the 21-day time period. 

The inhibitory factors) was stable when exposed to elevated temperatures. 

I nhibi#ory activity was retained in both native and concentrated supernatants after 

exposure to temperatures from 60°C to 100°C. Some activity remained in both 

native and concentrated supernatants after short-term exposure to 121 °C. 

Paenibacillus polymyxa seemed to produce more antimicrobial activity, as indicated 

by the size of the zone of inhibition, when incubated at 30°C as opposed to 25°C, 

37°C or 45°C. High cell density observed at 25°C did not result in high antimicrobial 
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activity. Larger zones of inhibition were seen from 24-h vs. 48-h cultures; cell 

densities were similar at both time points. 

Inhibition was observed most consistently for cultures in the pH range 

between 6.0 and 7.4. Inhibition from cultures overlapping this range was observed 

but inconsistent. 

The antimicrobial protein responsible for the inhibition of C. jejuni was 

determined to be relatively small (<_ 5000 Da) which would make it a Class 1 or Class 

II bacteriocin. 

Further development of the bacteriocin studied here may provide 

opportunities for enhanced food safety in the poultry industry both on the farm and in 

the processing plant. To consider possible commercial application, concerns such as 

production costs, efficacy at low inclusion levels, development of effective delivery 

systems and regulatory acceptance must be addressed. Although extensive 

research is yet required, this natural antimicrobial molecule offers a possible 

alternative to antibiotic and chemical preservative usage in the pre-harvest pout#ry 

production environments of feed, litter and water. The potential for this bacteriocin 

#o inhibit the growth of other foodborne pathogens commonly recovered in poultry 

environments such as Salmonella sp., E. coli and Clostridium sp. also should be 

investigated. 

Considerations for further research 

The research documented in this thesis represents an initial investigation into 

the potential use of P, polymyxa as a producer of an an#imicrobial compound active 

against C, jejuni. While this compound has shown efficacy in in vitro analyses, 
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additional research is required before any conclusions can be made as to its 

commercial viability. 

Further work that will provide needed information includes 

1. Studies of extended storage periods to determine possible loss of activity. 

2. Optimization of the degree of supernatant concentration required to maximize 

activity. 

3. Determination of cost effectiveness of concentrating the supernatan# rather 

than using the lower activity level of the native supernatant. 

4. Determina#ion of the optimum storage temperature for maintenance of activity 

over time. 

5. Further optimization of incubation time to achieve maximum activity in the 

shortest time. 

6. Optimization of antimicrobial activity under conditions of controlled pH. 

7. More detailed characterization of the antimicrobial protein, e.g. size, structure, 

etc. 

8. Establishment of production yields of the active molecule from "scale up" 

experiments. 

9. Determination of the efficacy of this antimicrobial molecule against other 

foodborne pathogens associated with poultry production, such as Salmonella, 

E. soli and Clostridium. 

10. Investigation of various delivery vehicles applicable to poultry production —

liquid, freeze-dried, encapsulation, etc. 

11. Determina#ion of the stability of antimicrobial activity in the selected system, 

For example, if delivered in the pre-harvest environment through feed or 

water, the molecule must be tolerant to the range of pH levels throughout the 
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intestinal tract of poultry, and must survive to the caecum where the majority 

of C. jejuni colonize. 
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